Rd Sharma XII Vol 1 2020 Solutions for Class 12 Science Maths Chapter 8 Continuity are provided here with simple step-by-step explanations. These solutions for Continuity are extremely popular among Class 12 Science students for Maths Continuity Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Rd Sharma XII Vol 1 2020 Book of Class 12 Science Maths Chapter 8 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Rd Sharma XII Vol 1 2020 Solutions. All Rd Sharma XII Vol 1 2020 Solutions for class Class 12 Science Maths are prepared by experts and are 100% accurate.
Page No 8.16:
Question 1:
Test the continuity of the function on f(x) at the origin:
Answer:
Given:
We observe
(LHL at x = 0) =
=
(RHL at x = 0) =
=
Hence, is discontinuous at the origin.
Page No 8.16:
Question 2:
A function f(x) is defined as,
Show that f(x) is continuous that x = 3.
Answer:
Given:
We observe
(LHL at x = 3) =
=
And, (RHL at x = 3) =
=
Also,
Hence, is continuous at .
Page No 8.16:
Question 3:
A function f(x) is defined as
Show that f(x) is continuous at x = 3
Answer:
Given:
We observe
(LHL at x = 3) =
=
(RHL at x = 3) =
=
Given:
Hence, is continuous at .
Page No 8.17:
Question 4:
If
Find whether f(x) is continuous at x = 1.
Answer:
Given:
We observe
(LHL at x = 1) =
=
(RHL at x = 1) =
=
Given:
Hence, is continuous at .
Page No 8.17:
Question 5:
If
Find whether f(x) is continuous at x = 0.
Answer:
Given:
We observe
(LHL at x = 0) =
=
(RHL at x = 0) =
=
Given:
It is known that for a function to be continuous at x = a,
But here,
Hence, is discontinuous at .
Page No 8.17:
Question 6:
If find whether f is continuous at x = 0.
Answer:
Given:
We observe
(LHL at x = 0) =
=
(RHL at x = 0) =
=
Given:
It is known that for a function to be continuous at x = a,
But here,
Hence, is discontinuous at .
Page No 8.17:
Question 7:
Let
Show that f(x) is discontinuous at x = 0.
Answer:
Given:
Consider:
Given:
∴
Thus, f(x) is discontinuous at x = 0.
Page No 8.17:
Question 8:
Show that
is discontinuous at x = 0.
Answer:
The given function can be rewritten as:
We observe
(LHL at x = 0) =
(RHL at x = 0) = =
And,
∴
Thus, f(x) is discontinuous at x = 0.
Page No 8.17:
Question 9:
Show that
is discontinuous at x = a.
Answer:
The given function can be rewritten as:
We observe
(LHL at x = a) =
(RHL at x = a) = =
∴
Thus, f(x) is discontinuous at x = a.
Page No 8.17:
Question 10:
Discuss the continuity of the following functions at the indicated point(s):
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
Answer:
(i) Given:
We observe
Hence, f(x) is continuous at x = 0.
(ii) Given:
We observe
Hence, f(x) is continuous at x = 0.
(iii) Given:
Putting x−a = y, we get
Hence, f(x) is continuous at x = a.
(iv) Given:
We observe
And,
Hence, f(x) is discontinuous at x = 0.
(v) Given:
Here,
Thus, .
(vi) Given:
We observe
(LHL at x = 1) =
And,
Hence, f(x) is discontinuous at x = 1.
(vii) Given:
We observe
(LHL at x = 0) =
(RHL at x = 0) =
Hence, f(x) is discontinuous at x = 0.
(viii) Given:
We observe
(LHL at x = a) =
(RHL at x = a) =
Hence, f(x) is continuous at x = a.
Page No 8.18:
Question 11:
Show that is discontinuous at x = 1.
Answer:
Given:
We observe
(LHL at x = 1) =
(RHL at x = 1) = =
∴
Thus, f(x) is discontinuous at x = 1.
Page No 8.18:
Question 12:
Show that
Answer:
Given:
We observe
(LHL at x = 0) =
(RHL at x = 1) =
And,
∴
Thus, f(x) is continuous at x = 0.
Page No 8.18:
Question 13:
Find the value of 'a' for which the function f defined by
is continuous at x = 0.
Answer:
Given:
We have
(LHL at x = 0) =
(RHL at x = 0) =
Page No 8.18:
Question 14:
Examine the continuity of the function
Also sketch the graph of this function.
Answer:
The given function can be rewritten as:
We observe
(LHL at x = 0) = =
(RHL at x = 0) = =
Hence, is discontinuous at .
Page No 8.18:
Question 15:
Discuss the continuity of the function f(x) at the point x = 0, where
Answer:
Given:
(LHL at x = 0) = =
(RHL at x = 0) = =
And,
Hence, is discontinuous at .
Page No 8.18:
Question 16:
Discuss the continuity of the function f(x) at the point x = 1/2, where
Answer:
Given:
We observe
(LHL at x = ) = =
(RHL at x = ) = =
Also,
Hence, is continuous at .
Page No 8.18:
Question 17:
Discuss the continuity of
Answer:
Hence, f(x) is discontinuous at x = 0.
Page No 8.18:
Question 18:
For what value of k is the following function continuous at x = 1?
Answer:
Given:
If is continuous at x = 1, then
⇒
⇒
⇒
⇒
Page No 8.18:
Question 19:
Determine the value of the constant k so that the function
Answer:
Given:
If is continuous at x = 1, then,
⇒
⇒
⇒
⇒
Page No 8.18:
Question 20:
For what value of k is the function
Answer:
Given:
If is continuous at x = 0, then
⇒
⇒
⇒
⇒
⇒
Page No 8.18:
Question 21:
Determine the value of the constant k so that the function
Answer:
Given:
If is continuous at x = 2, then
...(1)
Now,
And,
From (1), we have
Page No 8.19:
Question 22:
Determine the value of the constant k so that the function
Answer:
Given:
If is continuous at x = 0, then
⇒
⇒
⇒
⇒
⇒
Page No 8.19:
Question 23:
Find the values of a so that the function
Answer:
Given:
We observe
(LHL at x = 2) = =
(RHL at x = 2) = = =
And,
Since is continuous at x = 2, we have
⇒
⇒
⇒
Page No 8.19:
Question 24:
Prove that the function
remains discontinuous at x = 0, regardless the choice of k.
Answer:
The given function can be rewritten as:
We observe
(LHL at x = 0) =
=
(RHL at x = 0) =
=
So, such that are independent of k.
Thus, f(x) is discontinuous at x = 0, regardless of the choice of k.
Page No 8.19:
Question 25:
Find the value of k if f(x) is continuous at x = π/2, where
Answer:
Given:
If f(x) is continuous at x = , then
⇒ ...(1)
Putting , we get
From (1), we have
Hence, for , f(x) is continuous at x = .
Page No 8.19:
Question 26:
Determine the values of a, b, c for which the function
is continuous at x = 0.
Answer:
The given function can be rewritten as:
We observe
(LHL at x = 0) =
(RHL at x = 0) =
=
And,
If is continuous at x = 0, then
Now, exists only if .
∴
Page No 8.19:
Question 27:
If
Answer:
Given:
If is continuous at x = 0, then
...(1)
Consider:
From equation (1), we have
Page No 8.19:
Question 28:
If is continuous at x = 4, find a, b.
Answer:
Given:
We observe
(LHL at x = 4) =
(RHL at x = 4) =
And
If f(x) is continuous at x = 4, then
Page No 8.19:
Question 29:
For what value of k is the function
continuous at x = 0?
Answer:
Given:
If f(x) is continuous at x = 0, then
Page No 8.19:
Question 30:
Let , x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.
Answer:
Given:
If f(x) is continuous at x = 0, then
Page No 8.19:
Question 31:
If is continuous at x = 2, find k.
Answer:
Given:
If f(x) is continuous at x = 2, then
Page No 8.20:
Question 32:
If is continuous at x = 0, find k.
Answer:
Given:
If f(x) is continuous at x = 0, then
Page No 8.20:
Question 33:
Extend the definition of the following by continuity
at the point x = π.
Answer:
Given:
If f(x) is continuous at x = , then
Hence, the given function will be continuous at , if .
Page No 8.20:
Question 34:
If x ≠ 0 is continuous at x = 0, then find f (0).
Answer:
Given:
If f(x) is continuous at x = 0, then
Page No 8.20:
Question 35:
Find the value of k for which
is continuous at x = 0;
Answer:
Given:
If f(x) is continuous at x = 0, then
Page No 8.20:
Question 36:
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
(i) at x = 0
(ii) at x = 1
(iii) at x = 0
(iv) at x = π
(v) at x = 5
(vi) at x = 5
(vii) at x = 1
(viii)
(ix)
Answer:
(i) Given:
If f(x) is continuous at x = 0, then
(ii) Given:
If f(x) is continuous at x = 1, then
(iii) Given:
We have
(LHL at x = 0) =
(RHL at x = 0) =
(iv) Given:
We have
(LHL at x = ) =
(RHL at x = ) =
If f(x) is continuous at x = , then
(v) Given:
We have
(LHL at x = 5) =
(RHL at x = 5) =
If f(x) is continuous at x = 5, then
(vi) Given:
If f(x) is continuous at x = 5, then
(vii) Given:
We have
(LHL at x = 1) =
(RHL at x = 1) =
If f(x) is continuous at x = 1, then
(viii) Given:
We have
(LHL at x = 0) =
(RHL at x = 0) =
If f(x) is continuous at x = 0, then
(ix) Given:
If f(x) is continuous at x = 2, then
Page No 8.20:
Question 37:
Find the values of a and b so that the function f given by
is continuous at x = 3 and x = 5.
Answer:
Given:
We have
(LHL at x = 3) =
(RHL at x = 3) =
(LHL at x = 5) =
(RHL at x = 5) =
If f(x) is continuous at x = 3 and 5, then
∴
On solving eqs. (1) and (2), we get
Page No 8.21:
Question 38:
If . Show that f is continuous at x = 1.
Answer:
Given:
We have
(LHL at x = 1) =
(RHL at x = 1) =
Also,
∴
Hence, the given function is continuous at .
Page No 8.21:
Question 39:
Discuss the continuity of the f(x) at the indicated points:
(i) f(x) = | x | + | x − 1 | at x = 0, 1.
(ii) f(x) = | x − 1 | + | x + 1 | at x = −1, 1.
Answer:
(i) Given:
We have
(LHL at x = 0) =
(RHL at x = 0) =
Also,
Now,
(LHL at x = 1) =
(RHL at x =1) =
Also,
∴
Hence, is continuous at .
(ii) Given:
We have
(LHL at x = −1) =
(RHL at x = −1) =
Also,
Now,
(LHL at x = 1) =
(RHL at x =1) =
Also,
∴
Hence, is continuous at .
Page No 8.21:
Question 40:
Prove that is discontinuous at x = 0
Answer:
The given function can be rewritten as
We have
(LHL at x = 0) =
(RHL at x = 0) =
∴
Thus, f(x) is discontinuous at x = 0.
Page No 8.21:
Question 41:
If , then what should be the value of
k so that f(x) is continuous at x = 0.
Answer:
The given function can be rewritten as
We have
(LHL at x = 0) =
(RHL at x = 0) =
If is continuous at , then
∴ k can be any real number.
Page No 8.21:
Question 42:
For what value of λ is the function
continuous at x = 0? What about continuity at x = ± 1?
Answer:
The given function f is
If f is continuous at x = 0, then
Therefore, there is no value of λ for which f(x) is continuous at x = 0.
At x = 1,
f (1) = 4x + 1 = 4 × 1 + 1 = 5
Therefore, for any values of λ, f is continuous at x = 1
At x = -1, we have
f (-1) =
Therefore, for any values of λ, f is continuous at x = -1
Page No 8.21:
Question 43:
For what value of k is the following function continuous at x = 2?
Answer:
Given:
We have
(LHL at x = 2) =
(RHL at x = 2) =
Also,
If f(x) is continuous at x = 2, then
Hence, for k = 5, is continuous at .
Page No 8.21:
Question 44:
Let If f(x) is continuous at x = , find a and b.
Answer:
Given:
We have
(LHL at x = ) =
(RHL at x = ) =
Also,
If f(x) is continuous at x = , then
Page No 8.21:
Question 45:
If the functions f(x), defined below is continuous at x = 0, find the value of k.
Answer:
Given:
We have
(LHL at x = 0) =
(RHL at x = 0) =
Also,
If f(x) is continuous at x = 0, then
Hence, the required value of k is 1.
Page No 8.21:
Question 46:
Find the relationship between 'a' and 'b' so that the function 'f' defined by
is continuous at x = 3.
Answer:
Given:
We have
(LHL at x = 3) =
(RHL at x = 3) =
Hence, the required relationship between .
Page No 8.34:
Question 1:
Prove that the function is everywhere continuous.
Answer:
When x < 0, we have
We know that sin x as well as the identity function x are everywhere continuous.
So, the quotient function is continuous at each x < 0.
When x > 0, we have , which is a polynomial function.
Therefore, is continuous at each x > 0.
Now,
Let us consider the point x = 0.
Given:
We have
(LHL at x = 0) =
(RHL at x = 0) =
Also,
∴
Thus, is continuous at x = 0.
Hence, is everywhere continuous.
Page No 8.34:
Question 2:
Discuss the continuity of the function
Answer:
Given:
We have
(LHL at x = 0) =
(RHL at x = 0) =
∴
Thus, is discontinuous at x = 0.
Page No 8.34:
Question 3:
Find the points of discontinuity, if any, of the following functions:
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)
(xiii)
Answer:
(i)
When x 1, then
We know that a polynomial function is everywhere continuous.
So, is continuous at each x 1.
At x = 1, we have
(LHL at x = 1) =
(RHL at x = 1) =
Also,
∴
Thus, is discontinuous at x = 1.
Hence, the only point of discontinuity for is x = 1.
(ii)
Given:
When x 2, then
We know that a polynomial function is everywhere continuous.
Therefore, the functions are everywhere continuous.
So, the product function is everywhere continuous.
Thus, f(x) is continuous at every x 2.
At x = 2, we have
(LHL at x = 2) =
(RHL at x = 2) =
Also,
∴
Thus, is discontinuous at x = 2.
Hence, the only point of discontinuity for is x = 2.
(iii)
When x < 0, then
We know that sin x as well as the identity function x are everywhere continuous.
So, the quotient function is continuous at each x < 0.
When x > 0, then
, which is a polynomial function.
Therefore, is continuous at each x > 0.
Now,
Let us consider the point x = 0.
Given:
We have
(LHL at x = 0) =
(RHL at x = 0) =
∴
Thus, is discontinuous at x = 0.
Hence, the only point of discontinuity for is x = 0.
(iv)
When x 0, then
We know that sin 3x as well as the identity function x are everywhere continuous.
So, the quotient function is continuous at each x 0.
Let us consider the point x = 0.
Given:
We have
(LHL at x = 0) =
(RHL at x = 0) =
Also,
∴
Thus, is discontinuous at x = 0.
Hence, the only point of discontinuity for is x = 0.
(v)
When x 0, then
We know that sin x as well as the identity function x both are everywhere continuous.
So, the quotient function is continuous at each x 0.
Also, cos x is everywhere continuous.
Therefore, is continuous at each x 0.
Let us consider the point x = 0.
Given:
We have
(LHL at x = 0) =
(RHL at x = 0) =
Also,
∴
Thus, is discontinuous at x = 0.
Hence, the only point of discontinuity for is x = 0.
(vi)
When x 0, then
We know that is a polynomial function which is everywhere continuous.
Also, is everywhere continuous.
So, the quotient function is continuous at each x 0.
Let us consider the point x = 0.
Given:
We have
(LHL at x = 0) =
(RHL at x = 0) =
Also,
∴
Thus, is discontinuous at x = 0.
Hence, the only point of discontinuity for is x = 0.
(vii)
Given:
We have
It is given that
⇒
Hence, the given function is discontinuous at x = 0 and continuous elsewhere.
(viii)
When x > 1, then
Since modulus function is a continuous function, is continuous for each x > 1.
When x < 1, then
Since, are continuous being polynomial functions, will also be continuous.
Also, is continuous being a polynomial function.
is continuous for each .
is continuous for each x < 1.
At x = 1, we have
(LHL at x=1) =
(RHL at x=1) =
Also,
Thus,
Hence, is continuous at x= 1.
Thus, the given function is nowhere discontinuous.
(ix)
At , we have
Since modulus function and constant function are continuous, is continuous for each .
At , we have
Since polynomial function is continuous and constant function is continuous, is continuous for each.
At , we have
Since polynomial function is continuous and constant function is continuous, is continuous for each .
Now, we check the continuity of the function at the point .
We have
(LHL at x=3) =
(RHL at x=3) =
Hence, the only point of discontinuity of the given function is
(x)
Given:
The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I:
Therefore, f is continuous at all points x, such that x < 1
Case II:
If c = 1, then the left hand limit of f at x = 1 is,
The right hand limit of f at x = 1 is,
It is observed that the left and right hand limit of f at x = 1 do not coincide.
Therefore, f is not continuous at x = 1
Case III:
Therefore, f is continuous at all points x, such that x > 1
Thus, from the above observation, it can be concluded that x = 1 is the only point of discontinuity of f.
(xi) The given function isThe given function is defined at all points of the real line.
Let c be a point on the real line.
Case I:
Therefore, f is continuous at all points x, such that x < 0
Case II:
The left hand limit of f at x = 0 is,
The right hand limit of f at x = 0 is,
Therefore, f is continuous at x = 0
Case III:
Therefore, f is continuous at all points of the interval (0, 1).
Case IV:
The left hand limit of f at x = 1 is,
The right hand limit of f at x = 1 is,
It is observed that the left and right hand limits of f at x = 1 do not coincide.
Therefore, f is not continuous at x = 1
Case V:
Therefore, f is continuous at all points x, such that x > 1
Hence, f is not continuous only at x = 1
(xii)
The given function f is
It is evident that f is defined at all points of the real line.
Let c be a real number.
Case I:
Therefore, f is continuous at all points x, such that x ≠ 0
Case II:
Therefore, f is continuous at x = 0
From the above observations, it can be concluded that f is continuous at every point of the real line.
Thus, f is a continuous function.
(xiii)
The given function f is
The given function is defined at all points of the real line.
Let c be a point on the real line.
Case I:
Therefore, f is continuous at all points x, such that x < −1
Case II:
The left hand limit of f at x = −1 is,
The right hand limit of f at x = −1 is,
Therefore, f is continuous at x = −1
Case III:
Therefore, f is continuous at all points of the interval (−1, 1).
Case IV:
The left hand limit of f at x = 1 is,
The right hand limit of f at x = 1 is,
Therefore, f is continuous at x = 2
Case V:
Therefore, f is continuous at all points x, such that x > 1
Thus, from the above observations, it can be concluded that f is continuous at all points of the real line.
Page No 8.35:
Question 4:
In the following, determine the value(s) of constant(s) involved in the definition so that the given function is continuous:
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
Answer:
(i) Given:
If is continuous at x = 0, then
(ii) Given:
If is continuous at x = 2, then
(iii) Given:
If is continuous at x = 0, then
Hence, there does not exist any value of k, which can make the given function continuous.
(iv) Given:
If is continuous at x = 3 and 5, then
(v)
Given:
If is continuous at x = −1 and 0, then
(vi)
Given:
If is continuous at x = 0, then
(vii)
Given:
If is continuous at x = 2 and 10, then
(viii)
Given:
If is continuous at x = , then
Page No 8.36:
Question 5:
The function
is continuous on (0, ∞), then find the most suitable values of a and b.
Answer:
Given: f is continuous on
∴ f is continuous at x = 1 and
At x = 1, we have
Also,
At x = , we have
f is continuous at x = 1 and
∴
If a = 1, then
If a = −1, then
Hence, the most suitable values of a and b are
a = −1, b = 1 or a = 1,
Page No 8.36:
Question 6:
Find the values of a and b so that the function f(x) defined by
becomes continuous on [0, π].
Answer:
Given: f is continuous on .
∴ f is continuous at x = and
At x = , we have
At x = , we have
Since f is continuous at x = and x = , we get
Page No 8.36:
Question 7:
The function f(x) is defined as follows:
If f is continuous on [0, 8], find the values of a and b.
Answer:
Given: f is continuous on .
∴ f is continuous at x = 2 and x = 4
At x = 2, we have
Also,
At x = 4, we have
f is continuous at x = 2 and x = 4
∴
On simplifying eqs. (1) and (2), we get
Page No 8.36:
Question 8:
If for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].
Answer:
When , and are continuous in .
Thus, the quotient function is continuous in for each .
So, if is continuous at , then it will be everywhere continuous in .
Now,
Let us consider the point x = .
Given:
We have
(LHL at x = ) =
(RHL at x = ) =
If is continuous at , then
∴
Hence, for , the function will be everywhere continuous in .
Page No 8.36:
Question 9:
Discuss the continuity of the function
Answer:
When x < 2, we have
We know that a polynomial function is everywhere continuous.
So, is continuous for each x < 2.
When , we have
The functions 3x and 2 are continuous being the polynomial and constant function, respectively.
Thus, the quotient function is continuous at each x > 2.
Now,
Let us consider the point x = 2.
Given:
We have
(LHL at x = 2) =
(RHL at x = 2) =
Also,
∴
Thus, is continuous at x = 2.
Hence, is everywhere continuous.
Page No 8.36:
Question 10:
Discuss the continuity of f(x) = sin | x |.
Answer:
This function f is defined for every real number and f can be written as the composition of two functions as,
f = h o g, where
It has to be proved first that are continuous functions.
Clearly, g is defined for all real numbers.
Let c be a real number.
Case I:
Therefore, g is continuous at all points x < 0
Case II:
Therefore, g is continuous at all points x > 0
Case III:
Therefore, g is continuous at x = 0
From the above three observations, it can be concluded that g is continuous at all points.
Now, h (x) = sin x
It is evident that h (x) = sin x is defined for every real number.
Let c be a real number.
Put x = c + k
If x → c, then k → 0
h (c) = sin c
So, h is a continuous function.
is a continuous function.
Page No 8.37:
Question 11:
Prove that
is everywhere continuous.
Answer:
When x < 0, we have
We know that sin x as well as the identity function x are everywhere continuous.
So, the quotient function is continuous at each x < 0.
When x > 0, we have
, which is a polynomial function.
Therefore, is continuous at each x > 0.
Now,
Let us consider the point x = 0.
Given:
We have
(LHL at x = 0) =
(RHL at x = 0) =
Also,
∴
Thus, is continuous at x = 0.
Hence, is everywhere continuous.
Page No 8.37:
Question 12:
Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.
Answer:
Given:
It is evident that g is defined at all integral points.
Let .
Then,
The left hand limit of f at x = n is,
The right hand limit of f at x = n is,
It is observed that the left and right hand limits of f at x = n do not coincide.
i.e.
So, f is not continuous at x = n,
Hence, g is discontinuous at all integral points.
Page No 8.37:
Question 13:
Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x
Answer:
It is known that if g and h are two continuous functions, then are also continuous.
It has to proved first that g (x) = sin x and h (x) = cos x are continuous functions.
Let g (x) = sin x
It is evident that g (x) = sin x is defined for every real number.
Let c be a real number. Put x = c + h
If x → c, then h → 0
So, g is a continuous function.
Let h (x) = cos x
It is evident that h (x) = cos x is defined for every real number.
Let c be a real number. Put x = c + h
If x → c, then h → 0
h (c) = cos c
So, h is a continuous function.
Therefore, it can be concluded that
(i) f (x) = g (x) + h (x) = sin x + cos x is a continuous function.
(ii) f (x) = g (x) − h (x) = sin x − cos x is a continuous function.
(iii) f (x) = g (x) h (x) = sin x cos x is a continuous function.
Page No 8.37:
Question 14:
Show that f (x) = cos x2 is a continuous function.
Answer:
Given: f (x) = cos (x2)
This function f is defined for every real number and f can be written as the composition of two functions as
f = g o h, where g (x) = cos x and h (x) = x2
It has to be first proved that g (x) = cos x and h (x) = x2 are continuous functions.
It is evident that g is defined for every real number.
Let c be a real number.
Then, g (c) = cos c
So, g (x) = cos x is a continuous function.
Now,
h (x) = x2
Clearly, h is defined for every real number.
Let k be a real number, then h (k) = k2
So, h is a continuous function.
It is known that for real valued functions g and h, such that (g o h) is defined at x = c, if g is continuous at x = c and if f is continuous at g (c), then, (f o g) is continuous at x = c.
Therefore, is a continuous function.
Page No 8.37:
Question 15:
Show that f (x) = | cos x | is a continuous function.
Answer:
The given function is
This function f is defined for every real number and f can be written as the composition of two functions as,
f = g o h, where
It has to be first proved that are continuous functions.
Clearly, g is defined for all real numbers.
Let c be a real number.
Case I:
So, g is continuous at all points x < 0.
Case II:
So, g is continuous at all points x > 0.
Case III:
So, g is continuous at x = 0
From the above three observations, it can be concluded that g is continuous at all points.
Now, h (x) = cos x
It is evident that h (x) = cos x is defined for every real number.
Let c be a real number.
Put x = c + h
If x → c, then h → 0
h (c) = cos c
So, h (x) = cos x is a continuous function.
It is known that for real valued functions g and h,such that (g o h) is defined at x = c, if g is continuous at x = c and if f is continuous at g (c), then (f o g) is continuous at x = c.
Therefore, is a continuous function.
Page No 8.37:
Question 16:
Find all the points of discontinuity of f defined by f (x) = | x | − | x + 1 |.
Answer:
Given:
The two functions, g and h, are defined as
Then, f = g − h
The continuity of g and h is examined first.
Clearly, g is defined for all real numbers.
Let c be a real number.
Case I:
So, g is continuous at all points x < 0.
Case II:
So, g is continuous at all points x > 0.
Case III:
So, g is continuous at x = 0
From the above three observations, it can be concluded that g is continuous at all points.
Clearly, h is defined for every real number.
Let c be a real number.
Case I:
So, h is continuous at all points x < −1.
Case II:
So, h is continuous at all points x > −1.
Case III:
So, h is continuous at x = −1
From the above three observations, it can be concluded that h is continuous at all points of the real line.
So, g and h are continuous functions.
Thus, f = g − h is also a continuous function.
Therefore, f has no point of discontinuity.
Page No 8.37:
Question 17:
Determine if is a continuous function?
Answer:
The given function f is
It is evident that f is defined at all points of the real line.
Let c be a real number.
Case I:
So, f is continuous at all points x ≠ 0
Case II:
So, f is continuous at x = 0
From the above observations, it can be concluded that f is continuous at every point of the real line.
Thus, f is a continuous function.
Page No 8.37:
Question 18:
Given the function . Find the points of discontinuity of the function f(f(x)).
Answer:
Hence, the function is discontinuous at
Page No 8.37:
Question 19:
Find all point of discontinuity of the function
Answer:
Hence, the function is discontinuous at
Page No 8.41:
Question 1:
The function
(a) discontinuous at only one point
(b) discontinuous exactly at two points
(c) discontinuous exactly at three points
(d) none of these
Answer:
(C) discontinuous exactly at three points
Given:
Clearly, is defined and continuous for all real numbers except .
Therefore, is discontinuous exactly at three points.
Page No 8.41:
Question 2:
If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then
(a) f' (a+) = ϕ (a)
(b) f' (a−) = −ϕ (a)
(c) f' (a+) = f' (a−)
(d) none of these
Answer:
(a)
(b)
Here,
Also,
Page No 8.41:
Question 3:
If , then at x = 1
(a) f (x) is continuous and f' (1+) = log10 e
(b) f (x) is continuous and f' (1+) = log10 e
(c) f (x) is continuous and f' (1−) = log10 e
(d) f (x) is continuous and f' (1−) = −log10 e
Answer:
(a) f (x) is continuous and (1+) =
(d) f (x) is continuous and (1−) = −
Given:
Also,
Page No 8.42:
Question 4:
If is continuous at x = 0, then k equals
(a) log 2 log 3
(b) ln 6
(c) ln 2 ln 3
(d) none of these
Answer:
Given:
If is continuous at , then
Page No 8.42:
Question 5:
If f (x) defined by then f (x) is continuous for all
(a) x
(b) x except at x = 0
(c) x except at x = 1
(d) x except at x = 0 and x = 1.
Answer:
(d) x except at x = 0 and x = 1.
Given:
So,
Also,
Thus, is discontinuous at .
Now,
So, is discontinuous at .
Hence, is continuous for all x except at and x = 1.
Page No 8.42:
Question 6:
If
is continuous at x = π/2, then k =
(a)
(b)
(c)
(d)
Answer:
If is continuous at , then
Page No 8.42:
Question 7:
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
(a) 0
(b) 1/e
(c) e
(d) none of these
Answer:
(c) e
Suppose is continuous at
Given:
Page No 8.42:
Question 8:
If
and f (x) is continuous at x = 0, then the value of k is
(a) a − b
(b) a + b
(c) log a + log b
(d) none of these
Answer:
Given:
If f(x) is continuous at x = 0, then
Page No 8.42:
Question 9:
The function
(a) is continuous at x = 0
(b) is not continuous at x = 0
(c) is not continuous at x = 0, but can be made continuous at x = 0
(d) none of these
Answer:
(b) is not continuous at x = 0
Given:
We have
If , then
Also,
Hence, is discontinuous at .
Page No 8.42:
Question 10:
Let
Then, f (x) is continuous at x = 4 when
(a) a = 0, b = 0
(b) a = 1, b = 1
(c) a = −1, b = 1
(d) a = 1, b = −1.
Answer:
(d) a = 1, b = −1.
Given:
We have
(LHL at x = 4) =
(RHL at x = 4) =
Also,
If f(x) is continuous at x = 4, then
Page No 8.42:
Question 11:
If the function is continuous at x = 0, then the value of k is
(a) 0
(b) 1
(c) −1
(d) e.
Answer:
(b)
Given:
If is continuous at , then
Page No 8.42:
Question 12:
Let f (x) = | x | + | x − 1|, then
(a) f (x) is continuous at x = 0, as well as at x = 1
(b) f (x) is continuous at x = 0, but not at x = 1
(c) f (x) is continuous at x = 1, but not at x = 0
(d) none of these
Answer:
(a) f (x) is continuous at x = 0, as well as at x = 1
Since modulus function is everywhere continuous , are also everywhere continuous.
Also,
It is known that if f and g are continuous functions, then f + g will also be continuous.
Thus, is everywhere continuous.
Hence, is continuous at .
Page No 8.43:
Question 13:
Let . Then, f (x) is continuous on the set
(a) R
(b) R − {1}
(c) R − {2}
(d) R − {1, 2}
Answer:
(d) R − {1, 2}
Given:
So,
Also,
Thus,
Therefore, the only points of discontinuities of the function are .
Hence, the given function is continuous on the set R − {1, 2}.
.
Page No 8.43:
Question 14:
If is continuous at x = 0, then
(a) a = , b = 0, c =
(b) a = , b = 1, c =
(c) a = , b ∈ R − {0}, c =
(d) none of these
Answer:
(c) a =
We have
(LHL at x = 0) =
(RHL at x = 0) =
=
Also,
If is continuous at x = 0, then
Now, exists only if .
Thus, .
Page No 8.43:
Question 15:
If is continuous at , then
(a) m = 1, n = 0
(b)
(c)
(d)
Answer:
(c)
Here,
We have
(LHL at ) =
(RHL at ) =
Thus,
If is continuous at , then
Page No 8.43:
Question 16:
The value of f (0), so that the function
becomes continuous for all x, given by
(a) a3/2
(b) a1/2
(c) −a1/2
(d) −a3/2
Answer:
(c)
Given:
If is continuous for all x, then it will be continuous at x = 0 as well.
So, if is continuous at x = 0, then
Page No 8.43:
Question 17:
The function
(a) is discontinuous at finitely many points
(b) is continuous everywhere
(c) is discontinuous only at , n ∈ Z − {0} and x = 0
(d) none of these
Answer:
Given:
Case 1:
Here,
, which is the constant function
So, is continuous for all
Case 2:
Here,
, which is also a constant function.
So, is continuous for all
Case 3: Consider the points x = -1 and x = 1.
We have
Similarly, f(x) is discontinuous at x = 1.
Case 4: Consider the point x = 0.
We have
Thus, is discontinuous at .
At x = 0, we have
So, is discontinuous at .
Case 5: Consider the point
We have
Hence, is discontinuous only at , .
Page No 8.43:
Question 18:
The value of f (0), so that the function
is continuous, is given by
(a)
(b) 6
(c) 2
(d) 4
Answer:
(c) 2
For f(x) to be continuous at x = 0, we must have
Page No 8.44:
Question 19:
The value of f (0) so that the function
x ≠ 0 is continuous everywhere, is given by
(a) −1
(b) 1
(c) 26
(d) none of these
Answer:
(d) none of these
Given:
For to be continuous at x = 0, we must have
Page No 8.44:
Question 20:
is continuous in the interval [−1, 1], then p is equal to
(a) −1
(b) −1/2
(c) 1/2
(d) 1
Answer:
(b)
Given:
If is continuous at x = 0, then
Page No 8.44:
Question 21:
The function
is continuous for 0 ≤ x < ∞, then the most suitable values of a and b are
(a) a = 1, b = −1
(b) a = −1, b = 1 +
(c) a = −1, b = 1
(d) none of these
Answer:
(c) a = -1, b = 1
Given: is continuous for 0 ≤ x < ∞.
This means that is continuous for .
Now,
If is continuous at x = 1, then
If is continuous at x = , then
∴ For a = 1, we have
Also,
For a = −1, we have
Thus,
Page No 8.44:
Question 22:
If when x ≠ π/2 and f (π/2) = λ, then f (x) will be continuous function at x = π/2, where λ =
(a) 1/8
(b) 1/4
(c) 1/2
(d) none of these
Answer:
(a)
If is continuous at , then
...(1)
Suppose , then
Page No 8.44:
Question 23:
The value of a for which the function
may be continuous at x = 0 is
(a) 1
(b) 2
(c) 3
(d) none of these
Answer:
(d) none of these
For f(x) to be continuous at , we must have
Page No 8.44:
Question 24:
The function f (x) = tan x is discontinuous on the set
(a) {n π : n ∈ Z}
(b) {2n π : n ∈ Z}
(c)
(d)
Answer:
When, it is not defined at the integral points.
Hence, is discontinuous on the set .
Page No 8.44:
Question 25:
The function is continuous at x = 0, then k =
(a) 3
(b) 6
(c) 9
(d) 12
Answer:
(b) 6
Given:
If is continuous at , then
Page No 8.44:
Question 26:
If the function
is continuous at each point of its domain, then the value of f (0) is
(a) 2
(b)
(c)
(d)
Answer:
(b)
Given:
If f(x) is continuous at x = 0, then
Page No 8.44:
Question 27:
The value of b for which the function
is continuous at every point of its domain, is
(a) −1
(b) 0
(c)
(d) 1
Answer:
(a) −1
Given: is continuous at every point of its domain. So, it is continuous at .
Page No 8.45:
Question 28:
If , then the set of points discontinuity of the function f (f(f(x))) is
(a) {1}
(b) {0, 1}
(c) {−1, 1}
(d) none of these
Answer:
(b) {0, 1}
Given:
Clearly,
Now,
∴
Now,
∴
Thus, is not defined at .
Hence, is discontinuous at {0, 1}.
Page No 8.45:
Question 29:
Let The value which should be assigned to f (x) at so that it is continuous everywhere is
(a) 1
(b) 1/2
(c) 2
(d) none of these
Answer:
(b)
If is continuous at , then
If , then .
Page No 8.45:
Question 30:
The function is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as
(a) 0
(b) 1
(c) 2
(d) 3
Answer:
Here,
So, the given function can be rewritten as
If is continuous at , then
Hence, in order to make continuous at should be defined as 0.
Page No 8.45:
Question 31:
If is continuous at x = 0, then a equals
(a)
(b)
(c)
(d)
Answer:
(a)
Given:
We have
(LHL at x = 0) =
(RHL at x = 0) =
Page No 8.45:
Question 32:
If
then the value of (a, b) for which f (x) cannot be continuous at x = 1, is
(a) (2, 2)
(b) (3, 1)
(c) (4, 0)
(d) (5, 2)
Answer:
(d) (5, 2)
If f(x) is continuous at x = 1, then
Thus, the possible values of (a, b) can be . But .
Hence, for , cannot be continuous at x = 1.
Disclaimer: The question in the book has some error. The solution here is created according to the question given in the book.
Page No 8.45:
Question 33:
If the function f (x) defined by
is continuous at x = 0, then k =
(a) 1
(b) 5
(c) −1
(d) none of these
Answer:
Given:
If f(x) is continuous at x = 0, then.
Page No 8.45:
Question 34:
If
then the value of a so that f (x) may be continuous at x = 0, is
(a) 25
(b) 50
(c) −25
(d) none of these
Answer:
(b) 50
If is continuous at , then
Page No 8.45:
Question 35:
If then the value of the function at x = 0, so that the function is continuous at x = 0, is
(a) 0
(b) −1
(c) 1
(d) indeterminate
Answer:
(a) 0
Given:
Here,
If f(x) is continuous at x = 0, then.
Page No 8.45:
Question 36:
The value of k which makes
continuous at x = 0, is
(a) 8
(b) 1
(c) −1
(d) none of these
Answer:
(d) none of these
If is continuous at , then
Page No 8.46:
Question 37:
The values of the constants a, b and c for which the function
may be continuous at x = 0, are
(a)
(b)
(c)
(d) none of these
Answer:
If is continuous at , then
Also,
Page No 8.46:
Question 38:
The points of discontinuity of the function
(a) x = 1,
(b)
(c)
(d) x = 0, 4
Answer:
=5
Since is a polynomial function, it is continuous.
Thus, is continuous for every .
If , then . Since is a polynomial function and 4 is a constant function, both of them are continuous. So, their difference will also be continuous.
Thus, is continuous for every .
If , then . Since is a polynomial function and 7 is continuous function, their difference will also be continuous.
Thus, is continuous for every .
Now,
Consider the point . Here,
Also,
Thus, .
Now,
Consider the point . Here,
Thus, .
Page No 8.46:
Question 39:
If . Then, f (x) is continuous at , if
(a) b = 2
(b)
(c)
(d) none of these
Answer:
(b)
Given:
We have
(LHL at x = ) =
(RHL at x = ) =
Also,
If f(x) is continuous at x = , then
Page No 8.46:
Question 40:
The points of discontinuity of the function
(a) x = 1
(b) x = 3
(c) x = 1, 3
(d) none of these
Answer:
(b) x = 3
If , then .
Since is a polynomial function and is a constant function, both of them are continuous. So, their product will also be continuous.
Thus, is continuous at .
If , then .
Since is a polynomial function and is a constant function, both of them are continuous. So, their difference will also be continuous.
Thus, is continuous for every .
If , then .
Since is a polynomial function, it is continuous. So, is continuous for every .
Now,
Consider the point . Here,
Also,
Thus,
Hence, is continuous at .
Now,
Consider the point . Here,
Also,
Thus,
Hence, is discontinuous at .
So, the only point of discontinuity of is .
Page No 8.46:
Question 41:
The value of a for which the function
is continuous at every point of its domain, is
(a)
(b) 1
(c) 0
(d) −1
Answer:
(d) −1
Given:
If is continuous in its domain, then it will be continuous at .
Now,
Since f(x) is continuous at x = 1,
Page No 8.46:
Question 42:
If is continuous at x = π/2, then k is equal to
(a) 0
(b)
(c) 1
(d) −1
Answer:
(a) 0
Given:
If f(x) is continuous at , then
Now,
Also,
Page No 8.47:
Question 43:
If f(x) = 2x and then which of the following can be a discontinuous function
(a) f(x) + g(x)
(b) f(x) – g(x)
(c) f(x) g(x)
(d)
Answer:
f(x) = 2x and g(x) = are polynomial functions. We know polynomial functions are continuous for all values of x.
So, f(x) = 2x and g(x) = are continuous functions.
Also, sum, difference and product of continuous functions is continuous functions.
∴ f(x) + g(x), f(x) − g(x) and f(x)g(x) are continuous functions.
Now, is continuous if f(x) ≠ 0.
But, f(x) = 2x = 0 when x = 0. So, is discontinuous at x = 0.
Thus, can be a discontinuous function.
Hence, the correct answer is option (d).
Page No 8.47:
Question 44:
The function f(x) = cot x is discontinuous on the set
(a) {x : x = nπ, n ∈ Z}
(b) {x : x = 2nπ, n ∈ Z}
(C)
(d)
Answer:
f(x) = cotx =
Now, f(x) is discontinuous when sinx = 0.
sinx = 0
⇒ x = n, n ∈ Z
So, f(x) = cotx is discontinuous on the set {x : x = nπ, n ∈ Z}
Hence, the correct answer is option (a).
Page No 8.47:
Question 45:
If where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is
(a) 0
(b) –1
(c) 1
(d) none
Answer:
The given function is where x ≠ 0.
Now, f(x) is continuous at x = 0.
⇒ f(0) = 0 × a finite value between − 1 and 1
⇒ f(0) = 0
Thus, the value of the function f at x = 0 so that the function is continuous at x = 0 is 0.
Hence, the correct answer is option (a).
Page No 8.47:
Question 46:
The number of points at which the function is not continuous is
(a) 1
(b) 2
(c) 3
(d) none of these
Answer:
The function is discontinuous when x − [x] = 0.
x − [x] = 0
⇒ x = [x]
⇒ x is an integer
So, f(x) is not continuous for all x ∈ Z.
Thus, the function is not continuous at infinitely many points.
Hence, the correct answer is option (d).
Page No 8.47:
Question 47:
The function f(x) = [x] is continuous at
(a) 4
(b) –2
(c) 1
(d) 1.5
Answer:
The graph of f(x) = [x] is shown below.
It can be seen that, the function f(x) = [x] is discontinuous at all integral values of x. It is continuous at all points except the integer points.
Thus, the function f(x) = [x] is continuous at x = 1.5 and discontinuous at x = 4, x = –2 and x = 1.
Hence, the correct answer is option (d).
Page No 8.47:
Question 48:
The function is continuous at x = 0, then the value of k is
(a) 3
(b) 2
(c) 1
(d) 1.5
Answer:
It is given that, the function is continuous at x = 0.
Thus, the value of k is 2.
Hence, the correct answer is option (b).
Page No 8.47:
Question 1:
If is continuous at x = a, then b = ______________.
Answer:
It is given that, the function is continuous at x = a.
If is continuous at x = a, then b = .
Page No 8.47:
Question 2:
If the function is continuous at x = 0, then a = _____________.
Answer:
The function is continuous at x = 0.
Thus, the value of a is ±1.
If the function is continuous at x = 0, then a = ___±1___.
Page No 8.47:
Question 3:
If the function is continuous at x = 1, then a – b = _____________.
Answer:
The function is continuous at x = 1.
.....(1)
Now,
f(1) = 2 ....(2)
.....(3)
.....(4)
From (1), (2), (3) and (4), we have
2 = a − b = 2
∴ a − b = 2
Thus, the value of a − b is 2.
If the function is continuous at x = 1, then a – b = ____2____.
Page No 8.48:
Question 4:
If is continuous at x = 3, then k = _____________.
Answer:
The function is continuous at x = 3.
.....(1)
Now,
f(3) = 4 .....(2)
.....(3)
.....(4)
From (1), (2), (3) and (4), we have
4 = 3 + k = 4
⇒ 3 + k = 4
⇒ k = 4 − 3 = 1
Thus, the value of k is 1.
If is continuous at x = 3, then k = ___1___.
Page No 8.48:
Question 5:
If . Then f(x) is continuous at x = 4, then a + b = _____________.
Answer:
The function is continuous at x = 4.
.....(1)
Now,
f(4) = a + b .....(2)
.....(3)
.....(4)
From (1), (2), (3) and (4), we get
a + b = −1 + a = 1 + b
So,
a + b = −1 + a
⇒ b = −1
Also,
a + b = 1 + b
⇒ a = 1
∴ a + b = 1 + (−1) = 0
Thus, the value of a + b is 0.
If . Then f(x) is continuous at x = 4, then a + b = ___0___.
Page No 8.48:
Question 6:
If f : R → R defined by is continuous at x = 0, then λ = _____________.
Answer:
The function is continuous at x = 0.
Thus, the value of λ is −4.
If f : R → R defined by is continuous at x = 0, then λ = ____−4____.
Page No 8.48:
Question 7:
If is continuous at then k = _______________.
Answer:
The function is continuous at .
Put
When
Thus, the value of k is 0.
If is continuous at then k = ____0____.
Page No 8.48:
Question 8:
If is continuous at x = 0, then f(0) = ______________.
Answer:
The function is continuous at x = 0.
Thus, the value of f(0) is .
If is continuous at x = 0, then f(0) = .
Page No 8.48:
Question 9:
If is continuous at x = 3, then k = ____________.
Answer:
The function is continuous at x = 3.
Thus, the value of k is 0.
If is continuous at x = 3, then k = ___0___.
Page No 8.48:
Question 10:
If the function is given to be continuous at x = 1, then the value of k is ____________.
Answer:
The function is continuous at x = 1.
Thus, the value of k is 2.
If the function is given to be continuous at x = 1, then the value of k is ___2___.
Page No 8.48:
Question 11:
The set of points where f(x) = x – [x] is discontinuous is _____________.
Answer:
The graph of f(x) = x – [x] is shown below.
It can be seen that, the function f(x) = x – [x] is discontinuous at all integral values of x. So, the set of point where where f(x) = x – [x] is discontinuous is Z i.e. the set of integers.
The set of points where f(x) = x – [x] is discontinuous is _____the set of integers i.e. Z______.
Page No 8.48:
Question 12:
Let If f(x) is continuous in , then _________.
Answer:
The given function is
It is given that, the function f(x) is continuous in . So, the function is continuous at .
Put
When
So,
Thus, the value of is .
Let If f(x) is continuous in , then .
Page No 8.48:
Question 13:
If is everywhere continuous, then f(0) = ____________.
Answer:
Thus, f(x) is a polynomial function which is continuous everywhere.
So, f(x) is continuous at x = 0.
If is everywhere continuous, then f(0) = ____0____.
Page No 8.48:
Question 14:
The set of points at which the function is not continuous, is ___________.
Answer:
The given function is discontinuous when .
Also, x ≠ 0 (log 0 is not defined)
Now,
Thus, the given function is not continuous at x = 0, x = −1 and x = 1.
Hence, the set of points at which the given function is not continuous is {−1, 0, 1}.
The set of points at which the function is not continuous, is ___{−1, 0, 1}___.
Page No 8.48:
Question 15:
If is continuous, then 'a' should be equal to __________.
Answer:
It is given that, the function is continuous.
So, the function f(x) is continuous at x = 1.
.....(1)
Now,
f(1) = a × 1 + 1 = a + 1 .....(2)
.....(3)
.....(4)
From (1), (2), (3) and (4), we have
a + 1 = 3 = a + 1
⇒ a = 3 − 1 = 2
Thus, the value of a is 2.
If is continuous, then 'a' should be equal to ___2___.
Page No 8.48:
Question 16:
If f(x) is continuous at x = a and then k is equal to _____________.
Answer:
It is given that, f(x) is continuous at x = a.
.....(1)
Also,
.....(2)
From (1) and (2), we have
f(a) = k
Thus, the value of k is f(a).
If f(x) is continuous at x = a and then k is equal to .
Page No 8.48:
Question 17:
If is continuous at x = 0, then k is equal to _____________.
Answer:
The given function is continuous at x = 0.
Thus, the value of k is 6.
If is continuous at x = 0, then k is equal to ____6____.
Page No 8.48:
Question 18:
The set of points of discontinuity of f(x) = tan x is ___________.
Answer:
The given function is .
The function f(x) is discontinuous when .
Thus, the set of point of discontinuity of is .
The set of points of discontinuity of f(x) = tan x is .
Page No 8.48:
Question 19:
The set of points of discontinuity of f(x) = [x] is ___________.
Answer:
The graph of f(x) = [x] is shown below.
It can be seen that, the function f(x) = [x] is discontinuous at all integral values of x i.e. x ∈ Z.
Thus, the set of points of discontinuity of f(x) = [x] is the set of integers i.e. Z.
The set of points of discontinuity of f(x) = [x] is __the set of integers i.e. Z___.
Page No 8.48:
Question 20:
The set of points of discontinuity of is ________.
Answer:
The function is discontinuous when x – [x] = 0.
x – [x] = 0
⇒ x = [x]
⇒ x is an integer
So, the function f(x) is discontinuous for all x ∈ Z i.e. the set of integers.
Thus, the set of points of discontinuity of is the set of integers i.e. Z.
The set of points of discontinuity of is ____the set of integers i.e. Z_____.
Page No 8.49:
Question 1:
Define continuity of a function at a point.
Answer:
Continuity at a point:
A function is said to be continuous at a point x = a of its domain, iff .
Page No 8.49:
Question 2:
What happens to a function f (x) at x = a, if f (x) = f (a)?
Answer:
If is a function defined in its domain such that , then becomes continuous at .
Page No 8.49:
Question 3:
Find f (0), so that becomes continuous at x = 0.
Answer:
If is continuous at x = 0, then ...(1)
Given:
So, for , the function f(x) becomes continuous at x = 0.
Page No 8.49:
Question 4:
If is continuous at x = 0, then write the value of k.
Answer:
If is continuous at , then
Page No 8.49:
Question 5:
If the function is continuous at x = 0, find f (0).
Answer:
Given: is continuous at .
Page No 8.49:
Question 6:
If is continuous at x = 4, find k.
Answer:
Given:
If is continuous at , then
Page No 8.49:
Question 7:
Determine whether is continuous at x = 0 or not.
Answer:
Given:
We have
Hence, is continuous at .
Page No 8.49:
Question 8:
If is continuous at x = 0, find k.
Answer:
Given:
If is continuous at , then
Page No 8.49:
Question 9:
If is continuous at x = 0, write the value of k.
Answer:
Given,
If is continuous at , then
Page No 8.49:
Question 10:
Write the value of b for which is continuous at x = 1.
Answer:
Given:
If is continuous at , then
...(1)
Now,
Also,
Thus, for , the function is continuous at .
Page No 8.49:
Question 11:
Determine the value of the constant 'k' so that function f is continuous at 0.
Answer:
Since the function is continuous at x = 0, therefore,
Page No 8.49:
Question 12:
Find the value of k for which the function is continuous at x = 2
Answer:
Given,
If is continuous at , then
View NCERT Solutions for all chapters of Class 12