Page No 554:
Answer:
Page No 554:
Answer:
From the given right-angled triangle, we have:
Page No 554:
Answer:
From the given right-angled triangle, we have:
Page No 554:
Answer:
From right-angled ∆ABC, we have:
Page No 572:
Answer:
On substituting the values of various T-ratios, we get:
sin 60o cos 30o + cos 60o sin 30o
Page No 572:
Page No 572:
Answer:
On substituting the values of various T-ratios, we get:
cos 60o cos 30o − sin 60o sin 30o
Page No 572:
Answer:
On substituting the values of various T-ratios, we get:
cos 45o cos 30o + sin 45o sin 30o
Page No 572:
Answer:
As we know that,
Page No 572:
Answer:
On substituting the values of various T-ratios, we get:
2 cos2 60o + 3 sin2 45o − 3 sin2 30o + 2 cos2 90o
Page No 572:
Answer:
As we know that,
Page No 572:
Answer:
On substituting the values of various T-ratios, we get:
cot2 30o − 2 cos2 30o − sec2 45o + cosec2 30o
Page No 572:
Answer:
As we know that,
Page No 572:
Answer:
(i)
Hence, LHS = RHS
∴
(ii)
Hence, LHS = RHS
∴ 1−sin60°cos60°
Page No 572:
Answer:
(i) sin 60o cos 30o − cos 60o sin 30o
∴ sin 60o cos 30o − cos 60o sin 30o = sin 30o
(ii) cos 60o cos 30o + sin 60o sin 30o
∴ cos 60o cos 30o + sin 60o sin 30o = cos 30o
(iii) 2 sin 30o cos 30o
∴ 2 sin 30o cos 30o = sin 60o
(iv) 2 sin 45o cos 45o
Also, sin 90o = 1
∴ 2 sin 45o cos 45o = sin 90o
Page No 572:
Answer:
A = 45o
⇒ 2A = 2 45o = 90o
(i) sin 2A = sin 90o = 1
2 sin A cos A = 2 sin 45o cos 45o =
∴ sin 2A = 2 sin A cos A
(ii) cos 2A = cos 90o = 0
2 cos2 A − 1 = 2 cos2 45o − 1 =
Now, 1 − 2 sin2 A =
∴ cos 2A = 2 cos2 A − 1 = 1 − 2 sin2 A
Page No 572:
Answer:
A = 30o
⇒ 2A = 2 30o = 60o
(i) sin 2A = sin 60o =
∴
(ii) cos 2A = cos 60o =
∴
(iii) tan 2A = tan 60o =
∴ =2tanA1+tan2A
Page No 572:
Answer:
A = 60o and B = 30o
Now, A + B = 60o + 30o = 90o
Also, A − B = 60o − 30o = 30o
(i) sin (A + B) = sin 90o = 1
sin A cos B + cos A sin B = sin 60o cos 30o + cos 60o sin 30o
=
∴ sin (A + B) = sin A cos B + cos A sin B
(ii) cos (A + B) = cos 90o = 0
cos A cos B − sin A sin B =cos 60o cos 30o − sin 60o sin 30o
∴ cos (A + B) = cos A cos B − sin A sin B
Page No 573:
Answer:
(i) sin (A − B) = sin 30o =
sin A cos B − cos A sin B = sin 60o cos 30o − cos 60o sin 30o
=
∴ sin (A − B) = sin A cos B − cos A sin B
(ii) cos (A − B) = cos 30o =
cos A cos B + sin A sin B = cos 60o cos 30o + sin 60o sin 30o
=
∴ cos (A − B) = cos A cos B + sin A sin B
(iii) tan (A − B) = tan 30o =
∴ tan (A − B) =
Page No 573:
Answer:
Given:
13
Page No 573:
Answer:
A = 30o
⇒ 2A = 2 30o = 60o
By substituting the value of the given T-ratio, we get:
∴ tan 60o =
Page No 573:
Answer:
A = 30o
⇒ 2A = 2 30o = 60o
By substituting the value of the given T-ratio, we get:
∴ cos 30o =
Page No 573:
Answer:
A = 30o
⇒ 2A = 2 30o = 60o
By substituting the value of the given T-ratio, we get:
∴ sin 30o =
Page No 573:
Answer:
Disclaimer: can also be calculated by taking .
Page No 573:
Answer:
As we know that,
Page No 573:
Answer:
Page No 573:
Answer:
As we know that,
Page No 573:
Answer:
As we know that,
Page No 573:
Answer:
Here, tan (A − B) =
⇒ tan (A − B) = tan 30o [∵ tan 30o = ]
⇒ A − B = 30o ...(i)
Also, tan (A + B) =
⇒ tan (A + B) = tan 60o [∵ tan 60o = ]
⇒ A + B = 60o ...(ii)
Solving (i) and (ii), we get:
A = 45o and B = 15o
Page No 574:
Answer:
As we know that,
Page No 574:
Answer:
(i) As we know that,
(ii) As we know that,
Page No 576:
Answer:
As we know that,
Page No 576:
Answer:
As we know that,
Page No 576:
Answer:
As we know that,
Page No 576:
Answer:
As we know that,
Page No 576:
Answer:
As we know that,
Page No 576:
Answer:
As we know that,
Page No 576:
Answer:
As we know that,
Page No 576:
Answer:
Given: tanx = 3cotx
Page No 576:
Answer:
As we know that,
Page No 576:
Answer:
As we know that,
Page No 576:
Answer:
As we know that,
Page No 576:
Answer:
As we know that,
Page No 577:
Answer:
As we know that,
Page No 577:
Answer:
Page No 577:
Answer:
As we know that,
View NCERT Solutions for all chapters of Class 10